Secure connections for safer devices
Small-bore connectors are important components of many enteral feeding devices. Good design is critical, as tubing misconnections or failure can put patients at risk for serious injury or death.

Global design standards for tubing connectors are now helping improve patient safety and device efficacy. ISO 80369 requires small-bore connectors to be made of semirigid and rigid materials, making incorrect interconnections less likely. Enteral devices were the first of all the clinical applications to undergo this change.
To meet this standard, you may have to adjust your design, which means you may need a new mold or new materials. Eastman Tritan copolyester is a rigid material with the properties needed to comply with these regulations.

BPA-free Tritan demonstrates excellent chemical resistance, toughness, and color stability post-sterilization. It also helps maintain device safety and efficacy by ensuring that connecting parts retain their shape, dimension, and clarity during and after sterilization.

Using a rigid material that won’t be compromised by sterilization helps ensure patient safety and the efficacy of your device. Contact us for more information on switching to Tritan.
Tritan on Tour: Save the date!

Save the date!

Eastman and Advanced Molding Technologies are partnering to share innovative solutions to some of the biggest challenges in today's medical market. 

Get ready for an information-packed day, including insights from leading experts: Advanced Molding Technologies, Eastman, Nexeo Solutions, Beaumont Technologies, Henkel, and Dukane.

Tritan on Tour—September 11
Advanced Molding Technologies
8700 Rendova Street NE
Circle Pines, MN 55014

Blog categories:
Polymer compatibility with oncology drugs
As part of the continued effort to improve cancer treatment, pharmaceutical companies are developing new and improved oncology drugs. However, advanced oncology drugs and carrier solvents challenge the chemical resistance of polymers used in delivery devices. Such conditions can prevent devices from working properly or cause them to fail prematurely. When there is a pattern of compromised device performance or life cycle, regulatory agencies may tell manufacturers to stop using certain materials to protect patient safety.
Polymer selection is critical to a medical device. Engineering polymers offer many advantages for infusion and blood contact devices compared with other materials. Advantages include design and color flexibility, aesthetic appeal, reduced weight, corrosion resistance, and clarity. But polymers that have a low level of compatibility with chemicals—such as lipids, disinfectants, and specific oncology drugs and solvents—can experience environmental stress cracking or premature device failure in the presence of applied or residual stress.
It’s important to evaluate polymers for chemical resistance to keep patients safe and ensure device longevity. Eastman Tritan copolyesters have good overall chemical resistance and provide an attractive alternative to polycarbonate (PC) or acrylonitrile-butadiene-styrene (ABS) for oncology drug delivery devices. For closed-system transfer devices and other infusion devices, Tritan can be a candidate for molding devices that are compliant with safety alerts from regulatory agencies such as the Food and Drug Administration (FDA) and the Institute for Safe Medication Practices.
Eastman technical specialists can help you early on in your process to produce high quality medical devices. Contact us to learn more about the attributes of Tritan and how it compares to other commonly used materials when tested for chemical compatibility.

Blog categories:
Better bonds between polymers and adhesives
We often receive requests from medical device developers and original equipment manufacturers for guidance on the best adhesives to use with Eastman TritanTM copolyester. To help customers achieve the best adhesive solutions, we partnered with Henkel Corporation to test various resins and adhesives for use in medical devices.
Henkel’s LOCTITE® adhesive continues to be tested at the industry’s most comprehensive ISO 10993 biocompatibility standards. Eastman looked to determine which resins and adhesives, when used with Tritan, could optimize a manufacturer’s assembly process. Results showed that the use of Tritan and LOCTITE together created superior results, including improved
curing to increased flexibility.
By using Eastman and Henkel products in conjunction, producers can combat safety issues such as breaking and cracking, resulting in fewer defects and tougher, longer-lasting products. Understanding the best adhesive option from the outset can also help clients eliminate the need for trials and testing, reducing production costs, and ultimately improve their bottom line.
For more about this partnership, check out our Building better bonds brochure.

Blog categories:
Creating strong bonds with LSR technology and Tritan
Medical devices and housings are getting a surge of chemical resistance and impact strength thanks to the integration of new liquid silicone rubber (LSR) technology with medical grades of Eastman Tritan™ copolyester. Momentive’s Silopren LSR 47×9 series provides strong in-mold adhesion with Tritan—without the need for primers.
Clear and opaque grades of Tritan have a lower Tg and require a lower processing temperature than other engineering polymers. Because Silopren LSR 47×9 can cure rapidly at relatively low temperatures, it’s possible to achieve optimal functional performance and efficient processing with Tritan.

This combination is ideal for applications that require properties like handling comfort, waterproofing, durability, and aging stability. Incorporating LSR technology enhances the advantages of Tritan, which include:
  • Outstanding chemical resistance
  • Excellent impact strength and durability
  • Made without bisphenol A (BPA) and halogens
  • Superior noise-damping characteristics
  • Excellent clarity and color retention after sterilization
  • Color match (with certain opaque grades)
  • Design flexibility
When tested for adhesion performance, Silopren LSR 4739 and substrates of Tritan showed excellent bonding. The following table shows the results:

Blog categories: