Keys to classifying failures for quality engineers


Medical device failures are a common—and costly—occurrence. They can lead to a product recall, affect the product development cycle, and result in extra expenses for manufacturers. The reasons devices fail can be complex, making it difficult for quality engineers to classify the problem.
 
What can quality engineers do to remedy this problem? Consider these factors:
 
  • Understand why failures occur: Most device failures are caused by a misunderstanding of how a material’s properties, processing, and environment work together. In many cases, failures can result from a combination of wrong material selection, poor chemical resistance, high-stress design, or inconsistencies in manufacturing processes.
  • Collaborate with your supplier: Working with material suppliers on material selection, testing, part and tooling design review, and secondary operations can give quality engineers access to knowledge and resources they may not otherwise have.

A safer connection for stopcocks

Drug- and lipid-resistant polymers are playing an increasingly important role in enhancing patient safety. Stringent sterilization techniques can cause cracking, crazing, and hazing in commonly used plastics. They can also have a yellowing effect on certain polymers, which can impact color-coding systems in connector applications.

Eastman Tritan copolyester is resistant to a wide array of medical fluids, such as oncology drugs, drug carrier solvents, and lipids. Along with its toughness, low residual stress, and color stability post-sterilization, Tritan is an excellent choice for fluid management components.

Regulations in the medical market are constantly changing. When Elcam Medical, a world-class manufacturer of disposable medical devices for the OEM market, wanted to further improve the safety and efficacy of its fluid management devices, they turned to Eastman to find a polymer that complies with new regulations while still optimizing performance.

We are putting final touches on plans for Tritan on Tour!



Join us for Tritan on Tour—an exclusive event showcasing how new materials and manufacturing processes can improve medical device performance.

Hear new information about simulating, molding, bonding, and welding Eastman
Tritan™ copolyester.

Gain key insights on the latest with Tritan material and case studies; learn about speed to market through design for manufacturing/design for reliability (DFM/DFR).

Observe a Tritan tool running at the press and on-site presentations/demos from Nexeo Solutions, Beaumont Technologies, Henkel and Dukane!

Plus, we’ll begin the day with donuts and end with cocktails! Hope you can join in the fun!
 
Tritan on Tour—September 11
Advanced Molding Technologies
8700 Rendova Street NE
Circle Pines, MN 55014

Secure connections for safer devices

Small-bore connectors are important components of many enteral feeding devices. Good design is critical, as tubing misconnections or failure can put patients at risk for serious injury or death.

Global design standards for tubing connectors are now helping improve patient safety and device efficacy. ISO 80369 requires small-bore connectors to be made of semirigid and rigid materials, making incorrect interconnections less likely. Enteral devices were the first of all the clinical applications to undergo this change.
To meet this standard, you may have to adjust your design, which means you may need a new mold or new materials. Eastman Tritan copolyester is a rigid material with the properties needed to comply with these regulations.

Better bonds between polymers and adhesives

We often receive requests from medical device developers and original equipment manufacturers for guidance on the best adhesives to use with Eastman TritanTM copolyester. To help customers achieve the best adhesive solutions, we partnered with Henkel Corporation to test various resins and adhesives for use in medical devices.
 
Henkel’s LOCTITE® adhesive continues to be tested at the industry’s most comprehensive ISO 10993 biocompatibility standards. Eastman looked to determine which resins and adhesives, when used with Tritan, could optimize a manufacturer’s assembly process. Results showed that the use of Tritan and LOCTITE together created superior results, including improved
curing to increased flexibility.
 

Creating strong bonds with LSR technology and Tritan

Medical devices and housings are getting a surge of chemical resistance and impact strength thanks to the integration of new liquid silicone rubber (LSR) technology with medical grades of Eastman Tritan™ copolyester. Momentive’s Silopren LSR 47×9 series provides strong in-mold adhesion with Tritan—without the need for primers.
 
Clear and opaque grades of Tritan have a lower Tg and require a lower processing temperature than other engineering polymers. Because Silopren LSR 47×9 can cure rapidly at relatively low temperatures, it’s possible to achieve optimal functional performance and efficient processing with Tritan.

This combination is ideal for applications that require properties like handling comfort, waterproofing, durability, and aging stability. Incorporating LSR technology enhances the advantages of Tritan, which include:
  • Outstanding chemical resistance
  • Excellent impact strength and durability
  • Made without bisphenol A (BPA) and halogens
  • Superior noise-damping characteristics

A preferred supplier that goes the extra mile

At Eastman, we go above and beyond the typical duties of a preferred supplier. Unlike many of our competitors, Eastman provides you with regulatory and technical services to help you through the manufacturing process—at no extra cost to you. This guidance, along with access to our high quality, innovative materials, will elevate your brand and ensure that you’re optimizing our polymers for your devices.
 
Our regulatory group stays current with global regulatory changes and makes this information readily available to the market. We provide you with all the necessary regulatory information for the safe use of our polymers, including details on compliance with Food and Drug Administration standards, chemical and mechanical properties, and more.
 
We also offer premium technical service for all aspects of the molding process, from conception through bringing your product to market. Eastman Design Services capabilities include:
 

Colorful possibilities with Eastman MXF221 copolyester

Eastman MXF221 copolyester, available as a clear-natural or opaque-colored polymer, provides excellent chemical resistance and durability and is uniquely suited for electronic medical device housings. Not only is it extremely tough and able to stand up to the daily stresses of hospital environments, but it’s also compatible with branding initiatives.
 
Brand owners who use opaque polymers often require precise color matching and vibrant aesthetics to maintain their brand identities. Eastman MXF221 copolyester comes in a wide array of colors with the ability to align seamlessly with any brand standards.
 

Thank You for Asking.

We often receive great questions about molding with Eastman medical grade polymers and are always glad to provide answers and more information. Here is a response to a recent query from our inbox:
 
“What is the heat deflection temperature for Eastman MXF221 copolyester?”
 
Heat deflection temperature (HDT) is the temperature at which a polymer or plastic deforms under a specified load. The HDT of our latest offering, Eastman MXF221 copolyester, is outlined here.
 
Thermal properties
Deflection temperature  
  @ 0.455 MPa (66 psi) ASTM
D 648 
94°C (201°F)
  @ 1.82 MPa (264 psi)

Eastman Tritan™ copolyester: Innovative properties for medical devices

Eastman Tritan copolyester offers a unique blend of processing and performance properties, including clarity, toughness, and heat and chemical resistance. It can also often be substituted into existing molds with minimal adjustments to processing parameters. This total balance of performance and processing gives Tritan advantages and design flexibility over many other commonly used polymers. Some qualities that make Tritan an excellent choice when it comes to molding parts for the medical market include:
 
  • Toughness: Exceptional toughness and durability. Medical device housings made with Tritan are impact- and shatter-resistant and have the ability to withstand extreme conditions.
  • Clarity: Outstanding clarity and color retention before and after gamma and e-beam sterilization.

Pages