Educating product managers on how plastics affect your brand

 

The material you choose for your medical devices can have a big impact on your brand’s image. In today’s healthcare environment, not all plastics can withstand exposure to the aggressive disinfectants being used in hospitals. If your device is showing outward signs of suffering from exposure to effects of disinfection, including yellowing, cracking, crazing, or paint peeling, it’s time to reconsider material selection.

 

Polymer compatibility with oncology drugs

As part of the continued effort to improve cancer treatment, pharmaceutical companies are developing new and improved oncology drugs. However, advanced oncology drugs and carrier solvents challenge the chemical resistance of polymers used in delivery devices. Such conditions can prevent devices from working properly or cause them to fail prematurely. When there is a pattern of compromised device performance or life cycle, regulatory agencies may tell manufacturers to stop using certain materials to protect patient safety.
 

Better bonds between polymers and adhesives

We often receive requests from medical device developers and original equipment manufacturers for guidance on the best adhesives to use with Eastman TritanTM copolyester. To help customers achieve the best adhesive solutions, we partnered with Henkel Corporation to test various resins and adhesives for use in medical devices.
 
Henkel’s LOCTITE® adhesive continues to be tested at the industry’s most comprehensive ISO 10993 biocompatibility standards. Eastman looked to determine which resins and adhesives, when used with Tritan, could optimize a manufacturer’s assembly process. Results showed that the use of Tritan and LOCTITE together created superior results, including improved
curing to increased flexibility.
 

Creating strong bonds with LSR technology and Tritan

Medical devices and housings are getting a surge of chemical resistance and impact strength thanks to the integration of new liquid silicone rubber (LSR) technology with medical grades of Eastman Tritan™ copolyester. Momentive’s Silopren LSR 47×9 series provides strong in-mold adhesion with Tritan—without the need for primers.
 
Clear and opaque grades of Tritan have a lower Tg and require a lower processing temperature than other engineering polymers. Because Silopren LSR 47×9 can cure rapidly at relatively low temperatures, it’s possible to achieve optimal functional performance and efficient processing with Tritan.

This combination is ideal for applications that require properties like handling comfort, waterproofing, durability, and aging stability. Incorporating LSR technology enhances the advantages of Tritan, which include:
  • Outstanding chemical resistance
  • Excellent impact strength and durability
  • Made without bisphenol A (BPA) and halogens
  • Superior noise-damping characteristics

Four steps for testing housing material performance

When exposed to commonly used aggressive disinfectants and drugs, many materials used in medical devices can crack, craze, discolor, and become sticky. Currently, there are no industry standards for evaluating surface compatibility. That’s why Eastman developed a 4-step test method based on ASTM standards to better understand why plastics fail and how different plastics perform in the real world.
 
This simple, easily-repeatable test can help predict the reliability of a material after exposure to harsh cleaners and drugs commonly used in hospital settings. The method uses a 1.5% constant strain jig together with wet patches for applying chemical reagents. Here’s how it works:
  1. Select the appropriate jig.
  2. Load flex bars onto jig.
  3. Apply chemicals to the flex bars.
  4. Perform reverse side impact test.

A preferred supplier that goes the extra mile

At Eastman, we go above and beyond the typical duties of a preferred supplier. Unlike many of our competitors, Eastman provides you with regulatory and technical services to help you through the manufacturing process—at no extra cost to you. This guidance, along with access to our high quality, innovative materials, will elevate your brand and ensure that you’re optimizing our polymers for your devices.
 
Our regulatory group stays current with global regulatory changes and makes this information readily available to the market. We provide you with all the necessary regulatory information for the safe use of our polymers, including details on compliance with Food and Drug Administration standards, chemical and mechanical properties, and more.
 
We also offer premium technical service for all aspects of the molding process, from conception through bringing your product to market. Eastman Design Services capabilities include:
 

Thank You for Asking

We often receive great questions about molding with Eastman medical grade polymers and are always glad to provide answers and more information. Here is a response to a recent query from our inbox:
 
“How environmentally friendly is Eastman MXF221 copolyester?”

Eastman strives to create solutions that offer more value with less environmental impact.
MXF221 copolyester is one of our many environmentally responsible offerings that meets
industry standards for safety and sustainability. Some of its innovative properties include:
  • It’s made without BPA, halogens, or ortho-phthalate plasticizers.
  • Its toughness and durability can potentially increase product life and reduce waste.
  • The flame-retardant additives used in do not contain antimony, bromine, or chlorine.
  • It’s suitable for transducer housing applications that require contact with the skin.
Read more about how Tritan is improving sustainability and design for devices and diagnostics.

Colorful possibilities with Eastman MXF221 copolyester

Eastman MXF221 copolyester, available as a clear-natural or opaque-colored polymer, provides excellent chemical resistance and durability and is uniquely suited for electronic medical device housings. Not only is it extremely tough and able to stand up to the daily stresses of hospital environments, but it’s also compatible with branding initiatives.
 
Brand owners who use opaque polymers often require precise color matching and vibrant aesthetics to maintain their brand identities. Eastman MXF221 copolyester comes in a wide array of colors with the ability to align seamlessly with any brand standards.
 

Thank You for Asking.

We often receive great questions about molding with Eastman medical grade polymers and are always glad to provide answers and more information. Here is a response to a recent query from our inbox:
 
“What is the heat deflection temperature for Eastman MXF221 copolyester?”
 
Heat deflection temperature (HDT) is the temperature at which a polymer or plastic deforms under a specified load. The HDT of our latest offering, Eastman MXF221 copolyester, is outlined here.
 
Thermal properties
Deflection temperature  
  @ 0.455 MPa (66 psi) ASTM
D 648 
94°C (201°F)
  @ 1.82 MPa (264 psi)

Eastman Tritan™ copolyester: Innovative properties for medical devices

Eastman Tritan copolyester offers a unique blend of processing and performance properties, including clarity, toughness, and heat and chemical resistance. It can also often be substituted into existing molds with minimal adjustments to processing parameters. This total balance of performance and processing gives Tritan advantages and design flexibility over many other commonly used polymers. Some qualities that make Tritan an excellent choice when it comes to molding parts for the medical market include:
 
  • Toughness: Exceptional toughness and durability. Medical device housings made with Tritan are impact- and shatter-resistant and have the ability to withstand extreme conditions.
  • Clarity: Outstanding clarity and color retention before and after gamma and e-beam sterilization.

Pages